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The Schrédinger difference operator considered here has the form

(H ()Y} m)= —e(p(n+ 1) +d(n—1)) + Vinw + o) Y (n)

where V is a C?-periodic Morse function taking each value at not more than
two points. It is shown that for sufficiently small ¢ the operator H (a) has for
a.e. o a pure point spectrum. The corresponding eigenfunctions decay exponen-
tially outside a finite set. The integrated density of states is an incomplete devil’s
staircase with infinitely many flat pieces.

KEY WORDS: Schrodinger operator; eigenfunction; eigenvalue; Green'’s
function; continued fraction.

1. INTRODUCTION

The main subject of this paper concerns the properties of localization of
eigenfunctions (e.f.) of the self-adjoint operator H,(«) acting in /°(— o0, o)
by the formula

(H(a)y)(n)= —e((n+ D)+ ¢ (n—1))+ Vinwo+a) y(n)  (L1)

where V is a C%-smooth periodic function of period 1, having one non-
degenerate maximum and minimum and strictly monotone with nonzero
derivatives between them. A typical example is F(a)=cos2na. The
rotation number w is a typical irrational number. More precise
assumptions concerning o will be formulated below.
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Equation (1.1) is a particular example of the one-dimensional dif-
ference Schrodinger operator with a random potential. In a more general
setting one considers a measure space (M, .#,u) with a probability
measure g, its measure-preserving ergodic automorphism 7, and a
measurable function V(x). Each random realization of the potential is a
sample of values of V' along a random trajectory, i.e., V, = V(T"x). Thus,
the whole randomness stems from the randomness of an initial point x dis-
tributed according to the measure p. Thus, the general form of (1.1) is

(H(x)¥)(n)= —e((n+ 1)+ y(n—1)) + V(T"x) Y (n) (1.2)

Equation (1.1) corresponds to the case of M =S"', with u the Lebesgue
measure and 7T the rotation of M to the angle .

We shall say that for (1.2) the complete Anderson localization holds if,
with p-probability 1, the operator H,{x) has a complete system of eigen-
functions (e.f) belonging to /*(--o0, co). Naturally, the sets of ef and
corresponding eigenvalues (e.v.) are functions of x, ie, are random
variables in an appropriate sense.

The property of localization has been investigated mostly in cases
where {V(T"x)} was a sequence of identically distributed independent ran-
dom variables (iirv). The first explanations of localization were given by
Mott and Twose'" and Borland.” Namely, consider the equation

(Hy)n)= —e(@p(n+ 1) +y(n—1))+(V,— E)¥(n) (1.3)

where V, is a sequence of iirv. Then it follows from Furstenberg’s theorem
that for each E with y-probability 1 there exist y ; (0), ¥ 7 (1) such that the
corresponding solutions of (1.3) for n>0 with these initial data decay
exponentially as » — co. In the same manner there exist Yz (0), ¥ 7 (1) that
have this property as n —» —oo. According to Refs. 1 and 2, the e.v. corre-
spond to those E for which Y} (0)=y.(0), ¥+ (1)=y;(1). The main
mathematical difficulty in this approach is due to the fact that the appear-
ing sets of measure zero depend on E and for a typical sequence ¥/, the
function  F (1)/4 £ (0), which is defined only almost everywhere in x, is not
continuous in FE. Nevertheless, the final conclusion concerning the
localization is true. The first mathematical proofs for a slightly different
situation were given by Goldsheid et al.*> Kunz and Souillard®® con-
sidered the case (1.2) where the iirv have a probability distribution with a
bounded density. The idea of Ref. 5 is slightly different from that of Refs. 3
and 4. One of the main ingredients of all these and subsequent proofs is the
statement that all Liapunov exponents of the corresponding monodromy
matrices are different from zero, which in fact implies the exponential decay
of solutions 1y *. The exact results about the exponents defining the decay
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of ef. were obtained by Molchanov® and Carmona.!” The recent survey
article by Souillard® contains a rich mine of information about proofs and
results on localization, based upon the technique of Liapunov exponents.

The next landmark in developing the mathematical theory of
localization was the paper by Frohlich and Spencer.® They considered the
multidimensional version of (1.2) where again the random potential con-
sisted of a sequence of iirv whose distribution has a bounded density. The
main results of Ref. 9 gave, under appropriate assumptions, some
estimations of Green’s functions and in fact a construction of infinitely
many localized ef. provided that ¢ is sufficiently small. Later Frohlich
et al." showed that for small enough & the complete Anderson localization
takes place. In this connection an earlier paper by Jona-Lasinio et al.*V
should also be mentioned. The localization in this situation was proven by
Delyon et al.* and Simon et al."*

The main idea of Ref. 9 was based upon the notion of quantum tunnel-
ing and resonant e.f. The authors invented a very interesting approach to
the construction of exact e.f., which resembles in a sense the methods of
KAM theory. Namely, assuming that ef. of the operator in a bounded
domain with the Dirichlet boundary conditions are constructed, the
authors write down the series containing Green'’s functions for extended e.f.
in larger domains. The series is rapidly converging if a nonresonant con-
dition holds. This condition is formulated in terms of differences of e.v. in
different domains. Using Wegner’s lemma,”* the authors estimate the
probability distribution for these differences. From the estimation the
statement of localization follows with the help of the Borel-Cantelli lemma.
In the one-dimensional situation Frohlich ef al,"'® using their methods,
reproduced the results of Kunz and Souillard.®® Recently Carmona et al.*>
extended the technique and proved the localization for cases where the ran-
dom variables V, take a finite number of values. Let us emphasize that for
iirv Anderson localization takes place for all values of ¢.

Now return to the operator (1.1). The class of quasiperiodic potentials
is the simplest one after the class of periodic potentials. In the latter case
the spectrum has a zone structure and ef. have the form of Bloch functions
y(n) =e?@(n), where @(n) is a periodic function whose period is equal to
the period of the potential, and p is a quasimomentum. The general interest
in problems concerning spectral properties of (1.1) has increased recently in
connection with the discovery of quasicrystals. One-dimensional problems
are also of more than mathematical interest. For example, an optimistic
interpretation of the resuits of experimental work® sees them as evidence
of the existence of compounds that are periodic along two directions and
quasiperiodic in the third direction. In Ref 17, concerning the motion of
forced, damped pendulums, the problems of its dynamics are directly
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connected with the spectral properties of (1.1). One should also mention
the interesting papers by Kohmoto et al.'® and Kalugin et al.**’ where
some results for spectra of (1.1) were obtained for quasiperiodic potentials
taking a finite number of values. The results by Delyon and Petritis*”
show that in this case the spectrum might be only singular.

The first rigorous results for one-dimensional continuous Schrédinger
operators with quasiperiodic potentials were obtained in Refs. 21-23. Later
more exact estimations were given by Riissmann,® and Bellissard ez al.*>
extended the technique of Refs. 21, 22, and 24 to (1.1). The main result of
these studies shows that for sufficiently large & or for sufficiently small
potentials one can construct a set S, [ —2¢-min V, 2g+max V] not
depending on o such that for each A€ S, there exist two Bloch ef. of the
form e?"®(nw+a) and e ?"®(nw+ «) having the same e.v. Moreover,
(S,)max V—min V-1 as ¢— oo, where / in this section means the
Lebesgue measure. The set S, constructed in Refs. 21-25 is a Cantor-type
set of positive measure. It gives a contribution to the limit density of states
which turns out to have a devil’s staircase component. The components of
the complement or gaps are analogs of forbidden zones, the union of which
is, as expected, an everywhere dense set. Strictly speaking, the method,
which is based on KAM estimation, does not give any information about
proper ties of the spectrum for points of this set. However, some results by
Avron and Simon®® show that generically the limit density of states of
(1.1) is a Cantor devil’s staircase, while Johnson and Moser®” give a
beautiful description of the forbidden zones (fz.). Moser and Poschel®®
show that in typical situations the fz. have positive length.

The main result of this paper is a theorem that states that for suf-
ficiently small ¢ the spectrum of H,(e) is pure point and each ef. decays
exponentially outside a finite set. The set of e.v. {i,(a)} really depends on
o, or, using the terminology of the theory of dynamical systems, the spec-
trum of H,(x) depends sensitively on o. Thus, we encounter in (1.1) two
different types of spectra: a Bloch spectrum not depending on o and a pure
point spectrum sensitively depending on o. The transition from one type to
another under the change of ¢ is apparently complicated and the notion of
mobility edge as a strict boundary between two types of spectra needs some
clarification here. Probably this transition has something in common with
the transition occurring in the bifurcation of invariant KAM circles into
cantori (see, e.g., Ref. 30).

The method of this paper was inspired by the paper of Frohlich and
Spencer.® Our main idea consists in a detailed analysis of the process of
tunneling. Namely, suppose that we have a method that gives a possibility
for any ef y={y(n)} of H(x) [see (1.1)] to construct an essential
support (es.) Z(¥), which is a finite subset of the lattice Z' having the
following two natural properties:



1D Difference Schrodinger Operator 865

(a) Outside of Z(¥) the values of (n) decay exponentially with the
distance of r to Z(y).

(b) If Y is an ef of H(«), then Ty is an ef of H (x+ w) and
Z(Tyr) = TZ(yr); here, by the same letter 7 we denote the translation of the
lattice Z' to the left and the induced transformation of sequences

(T)(n) =y (n+1).

The properties (a) and (b) do not determine Z(y) uniquely, but in the
following sections we shall elaborate a concrete procedure for their con-
struction. If we have alrcady defined Z(y) for all yr, we may introduce the
following two new objects:

®(x) is the set of all e.f. ¥ of the operator H,(a) for which 0e Z(y) <
[0, o).

A(x) is the set of all e.v. A(«) of e.f. belonging to @(«).

In general @(«) and A(x) are multivalued functions of « taking finitely
many values. In our situation they are “measurable” in o. In the case of
complete Anderson localization the set of all e.v. of H.(a) is equal to

®_ o Ale+mw), ie., the whole spectrum consists of values of a
measurable function along a trajectory of rotation. It was always clear that
in the domain of Anderson localization the whole set of e.v. of H,(x) in
(1.2) is a nonmeasurable function of x. The last expression shows explicitly
the nature of this nonmeasurability. The basis of all ef. can be written as

% o I"®(a+ mw). It is easy to show also that the limit density of
states is the distribution function of A(a). Certainly objects like @(«) and
A(a) can be defined not only in our situation, but also in the general
setting of (1.2). The investigation of their properties might be useful for
many problems, for example, a limiting distribution of spacings between
the nearest e.v. and others.

The first idea of the possibility of Anderson localization in (1.1) with
V(x)=cos 2nx appeared in Ref 29, where the Aubry duality was dis-
covered and it was proven that for small enough ¢ Liapunov exponents for
all values of the spectral parameter E are positive.? Later Simon®" and
Pastur and Figotin®% gave a more rigorous derivation of these results. It
follows from the proof of our theorem that the integrated density of states
of H,(«) is, for small enough ¢, a Cantor devil’s staircase concentrated on a
Cantor set of positive measure and for all £ the Liapunov exponents are
positive for general potentials V. Anderson localization for the potential
V() =tg(am) was proved by Pastur and Figotin®* and Simon.®** Other
examples of potentials where one can establish Anderson localization for
small ¢ appeared in a paper by Poschel.®*) The fact that the integrated den-
sity of states is a Cantor staircase is connected with the fact that we are
dealing with quasiperiodic potentials with one incommensurate density.

2In fact, the results are sharper.
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As is clear from what was said above, our method consists in con-
structing functions @(«) and A(«) for the operators H,(«). It is based upon
a renormalization group analysis currently popular in the theory of
dynamical systems. Namely, let us consider the continued fraction expan-
sion of o, ie., w=[k,, k,,.., k,,..]. We assume that (1) k, <const- 5% (2)
if w,=p,/q, is the sth approximant of w, ie., w,=[k,k;,., k], then
lim,_, ,(1/s)In g, exists. It is well known that almost all w have both
properties. Our analysis goes by induction in s. On the sth step we consider
the operator

(HY(0) y)n)= —e(@(n+ D+ ¢ (n—1)) + Vino,+ o) y(n)  (14)

in the finite-dimensional space of periodic sequences {y(n)} with the
period g,, for which we define the corresponding objects @“)(a) and
A®(«). Then we develop a perturbation theory that makes it possible to
pass from s — s+ 1. In the next section we discuss in detail the initial step
of the construction.

In our proof several orders of smallness appear. The smallness g ' is a
smallness of distances between the e.v. of H)(«). Next is the smallness g2,
which is a smallness of perturbation of the potential under the transition
s — s+ 1. Then we introduce a smallness that is intermediate between these
and is connected with the cutoff of ef. (see later). We choose this to be
equal to ¢ %% however, it is possible to have ¢ for arbitrary y, 1 <y < 2.
We also consider slightly perturbed smallness, such as g '*ctnl/o™

st el op g-32ein o™l The constants ¢ and C are absolute con-
stants not depending on ¢ and s. In one part of the construction we also
need ¢ 2*°, where ¢(ln 1/¢) ="' <8, < 1/2. The rotation of the circle to the
angle w is denoted by R,,.

Remark. J. Frohlich has informed me that he and T. Spencer, using
their methods, ' have also proved the complete Anderson localization
for (1.1).

2. BEGINNING OF THE INDUCTIVE PROCEDURE

We consider the operator H®)(x) acting in the space of periodic
sequences Y = {¥(n)}, Y(n+q,)=y(n) by the formula

(HD(2) y)(n)= —e(f(n+ 1)+ Y(n— 1))+ V(nw,+a) Y(n)  (2.1)

The spectrum of H{(«) consists of g, numbers Al)(a) <A a) < -+ <
AE) (@), where each A0)(a) is a periodic function of o with period g '. A
typical form of these functions is presented in Fig. 1. The fact that they
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A4

Figure 1

really look like this will be clear from the later analysis. The intervals
(max, A$)(«), min, A%, | («)) are forbidden zones (fz.) because there are no
a for which A%)(a) fit in these intervals. Generically the number of all f.z. is
equal to ¢, — 1.

This representation for the spectrum is not very convenient for our
goals and we shall elaborate another one. For ¢ =0 the spectrum of H§(«)
consists of the numbers V(mw,+ o), 0<m <gq,. Each ef y{), is concen-
trated at a single point, ie, Y, =46, If we put A5 (a) = V(a), then we see
that the whole spectrum is given by the formula J#—§ A5 (o + mg1).

It is natural to define the essential support (e.s.) of the e.f. 4, as con-
sisting of the point m. Thus, @§)(a) is the d-function with the eigenvalue
(e.v.) AP (o) = V().

Denote IT,,={a|V(ikw,+a)=V(lw,+a)}. It follows from our
assumptions concerning V that I, consists precisely of two points (see
Fig. 2). Also, 11, = R% II;, . The structure of e.f. of H{*(«) might change
from that of H{(«) in neighborhoods of I7,,. Introduce neighborhoods
Oy, of points a,e Il ,;, i=1,2, of radii p, , in such a way that O, ,,=
RE O, ., and different neighborhoods are disjoint.

Assume that a ¢ J,;, O, ;. Then e.v. /Tgf}, 1<j<q,, of the unpertur-
bed operator H{(«) are sufficiently far from each other, ie., |1 — 1) >,
where y >0 depends only on the choice of the numbers p|,_,,. The stan-
dard perturbation theory is applied provided that ¢ is sufficiently small. It
gives for small enough ¢ the existence of g, normed ef. ¥, 1<m<yq,,
such that [ (n)| < (const - ¢)**'"*™, where dist is the usual distance on
the set 0 <n<gq, with periodic boundary conditions. The corresponding
ev. Ay), satisfy the inequalities |A() — V(mw,+ «)| <const-¢. The reader
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can also derive all these facts concerning ¥ *) from the results of Section 4.
Some nontriviality i1s contained in the fact that the constant does not
depend on . In deriving the inequality for A{’), one has to use the fact that
125), =A%) 1 = const - | j, — j,| 7* for some b >0, which follows easily from
the assumptions about w. As before, we define the e.s. of /), as consisting
of the point m, ie., Z(Y$))=m.

Let us take a € O, ;;. Now the difference between one pair of unpertur-
bed e.v. (), 1¢) can be arbitrarily small while all other e.v. 1$) are far from
each other and from this pair. This pair generates the simplest resonant e.f.
whose form might be more complicated. Other e.f. are constructed with the
help of the usual perturbation theory and their values decay exponentially
outside some point m. For such e.f. ) we put as before Z(y$))=m.

The analysis of the resonant e.f. is a bit more complicated. We look for
two e.f. having the form

Yk =A10e+ A28, + -
where dots denote the projections to the space orthogonal to §,, §,, which
are small enough compared with A3 + 42. The graphs of the corresponding
ev. A, =A%), are given in Fig. 3. One sees explicitly the appearence of
the forbldden zones (f.z.) due to the resonances. The formulas of pertur-
bation theory show that the widths of fz. decay exponentially with the
dist(k, /).
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The main technique of this paper is the perturbation theory. It will be
applied to functions that are not exact e.f. but are e.f. with some precision
or almost ef. (see later). In other words, sometimes it is more convenient
for us to replace the exact e.f. by approximate e.f. if the corresponding error
is small enough. According to this approach, at the initial step of the con-
struction we shall consider the exact e.f. if the widths of the f.z. are not too
small, or, more precisely, if

1 —1
lk—1l<(2-6,)In qso-<1ng>
where §, will be specified later. In this case we put

ZOWEh =203k, ) ={k 1}
If

1 —1
|k—l|>(2“5)1nq,o~(ln;)

then the width of the fz. is equal to min |1, () — A4 _(a)| <g,** . Here
we make the operation that we call the cut of the resonant e.f. Namely, we
find the numbers B,, 1 <i<4, such that

‘//S/)c =B, l//gfl)¢/+ + Bz‘pg[f/)c,/,— =0+
YO =Byl + B, =+ -
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where dots have the same meaning as above. The functions ¥ ) and ¢} are
almost e.f. and the error is of the order A, — A _.

For approximate e.f. ¢’ and ¥{) we put ZW$))=k and Z(y{)) =1
Now we can define the functions ¢ («) and A («). If a ¢ (J,; O,,,, We put
@“)(a) to be equal to the exact e.f. ¢}, for which Z(y{})=0 and 4“)(x) is
equal to the corresponding ev. If aeQ,,; and 0<k<(2—9,)Ing,-
(In 1/e) ', then ®“)(a) consists of two exact e.f. having the e.s. {0, k}, and
A9(a) consists of two corresponding e.v. Remark that for € O_ ., the
values of ®@“(a) and A4“)(x) are empty sets. Indeed, for such « the ef
whose e.s. contains 0 has the e.s. { —k, 0}. Thus, there are no e.f. for which
the e.s. contains O and lies to the right of 0.

IfaeOy,,and k=(2—6,)Ing, (In1/e)~", then we take @'(a) to be
equal to the approximate ef 0, for which Z(y{})=0. If yi)=
BoSl, . +ByS, ., Bi+Bi=1, we put A®(a)= B34, + B}l _. Thus,
@) and A4*(a) are completely defined. The graph of A“)(«) is given in
Fig. 4.

The function 4“(«) has the following property.

For each 1 from the range of A% except the extremal one there are
two values o,, a, for which A= A4)(a;) = A“)(a,). The e.s. of corresponding
elements of ®“)(a,) and ®V(«,) are the same.

)

A

Figure 4
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In our construction we consider the transitions s—s+1 and the
graphs Ao+ kg, ), 0<k<g,.,. In small neighborhoods of their
points of intersection there appear new resonances where the form of the
e.f. changes. The main idea of our approach is to follow for these changes.

3. INDUCTIVE ASSUMPTIONS ABOUT
THE SPECTRUM OF H)(a)

The main content of this paper is an inductive process that makes it
possible to construct e.f. of H**1(«) based on detailed information concer-
ning e.f. and e.v. of H*)(a). This information is described in this section.

Denote the ev. of the operator H®(a) by pl(a), 1<i<gq,.
Generically,

pia) <p(o) < o < pia)

and each u®(a) is a periodic function of o with the period ¢! Intervals
I, = (max, y;_(2), min, p,(«)) are forbidden zones (fz.). A fz. is called
wide if the length |I7,| > g 2*+°. Other fz. are called narrow. They appear
as a result of wide resonances.

As in Section 2, we shall deal with another description of the spectrum.
Assume that on the axis of the spectrum r < g, nonoverlapping segments
[a,b,], a,,,—b,>q7>%%, and subsegments [a, ¢,], [d,b,], a,<c¢,<
d, < b,, are given, and thus the gap (b, a,.,) is always wide.

I For each [ 1</<r, four nonoverlapping intervals A=

i

[af), B{P], 1<i<4, on the axis of a are given and on each of them a
C*-function A% is defined in such a way that:

1. The following hoid:

A(4[9) = 4;5(4}%) = [c» d}]

I _ddip@) P A ()
RS ShY e <y
d/l(s)(a) 1 ey (S)(OC)
—hiV< ;,; < - o di;z <hPgi

Here A, h?) are constants and we will see from our construction that they
converge to a limit as s — co.

2. The segments 4{7, 4% are called resonant zones (r.z.). For each
r.z. the moment s(/, i), i=1, 4, of its appearance is defined. Also,

A;,sl)(Af,sl)) = [a,;, ¢/], Aﬁ)(dj,?) =[d,, b,]
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3. The following hold:

d>Af) L4
dfx doi2 < ”‘(hﬁl)) ‘I;(/?l)

> (R gt

and each value except a,, b, is taken precisely at two points.

It is convenient to assume that each function A} is defined everywhere
but its value outside 4{} is an empty set.

A typical form of A is presented at in Fig. 5.

II. For each 4{3, nonoverlapping subintervals 4%, c 4{3 are defined,
which are called small resonance zones. We shall see that if o+ w,t¢
ULix 415, for all 1, 0< 1< q,, then the spectrum of H{"(«) is the set

gs— 1

U U AP+ 1w,)

t=0 Li
which therefore has g points. If a e A4{), for some /, i, k, then the set

gs— 1
U U A48+ 1e,)

=0 Li

contains as before ¢, points, but some of them are only approximate e.v.
The function 4 (x) is defined by the expression

A9@)= ) ARE)

Lia eA,‘“ﬁ-‘

(€2

7 ,/At’,s

do b

[4
4
(1)
__________ A,
Ce (2
Qa, fF-—===n o

Figure 5
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L Small rz. 4§, are united in pairs 4{,, 45, =45, + ot for
some ¢, where

1 —1
(2—51)1nqs-<lng> <t<gq,

Moreover, i=1i for i=1,4 and i'=i+ 1 for i=2 or 3. The value of tis
called the width of the resonance corresponding to the pair 43, 43,
Functions 4§ are monotone on each of these intervals; on one of them it is
increasing, while it is decreasing on the other, but A{P(4),) = AEHAE ).
The lengths of the intervals A4, 4,. satisfy the inequalities

E AN VIR

e tIn(1/e) ]
“L2—6,)Ing,
Now we shall formulate inductive assumptions concerning e¢.f.

IV. Assume that o ¢ ), 4{5) and ae4{ . Then an exact normed

ef Yl . of H)(a)is defined whose e.v. is equal to AR (). I ae A3, then

a normed almost ef. ), is defined in a sense to be specified later. For
each ef. Yy =y¥) . or almost ef. Y=y, a finite set Z(¥)c [0, ig,],

0€e Z(y), is defined, which is called an essential support (e.s.) of Y. For this
set:

where

(1) |¥(n)] < (Cg)distnzth)

for those n for which

1
dist(n, Z(Y)) < ;151(1/3.6(1 —f;>

and

(2) diam(Z(y))<C <ln %) b s

The values of the constants C and ¢ follow easily from the construction.
Now we can explain the sense in which ¥), . is an almost e.f. Namely,

[(HE() Y i) () — AR @) Y () < g2 7%

for all n for which

31
dist(n, Z(y$),,)) < S35 1(11‘2) (1 —é>
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V. The es. Z does not depend on aeA4{y U A4 for ecach /=1,2,.., r.
For ae 4{3 (a € 4)) the e.s. also does not depend on o and there exists m,
(my) such that Z=2'0 T™Z', i=1, 4, where Z' is an e.s. corresponding to
4;,. It is assumed also that Z and T™Z" do not intersect each other.

If  is an ef. or almost e.f. of H*)(a), then T} is an ef. or almost ef.
of H®)(« + tw,). By definition, the e.s. of T% is Z(y) + .

V1. For each phase « put
ds(S)(a) = U (lpgzsl)z Y lpacltk

The set of all ef. or almost e.f.

U UTWSuvo= U To%a+mw,)

Or<g, Li O<r<gs

is a basis in the space of periodic sequences ¥ = {y(n)}, Yy(n+q,) =y(n).

VIL. 1t follows from V that # (Z(y))=2". The number r is called the
range of an ef. or of the interval 4{3. It means that the corresponding e.f.
appeared as a result of r resonances. If r= 1, then Z(¥)=2Z'u T"Z’, where
m is the width of the resonance. In fact for the resonances of the rth range
we have r numbers m; <m, < -+ <m,, where m=m,, m, , is defined in a
similar way for Z' and so on. Also, 4{ c 4§") and Z' = Z(y§) ) for a € 45}
and so on.

In passing from s — s + 1 we first construct the functions 4“* "(«) and
@ (a), then decompose the A axis onto corresponding segments and
define corresponding 4+ 1. The construction gives all needed properties of
these functions. An approximate form of A“)(a) is presented in Fig. 6. It
differs from Fig. 4 by a slightly more complicated form of resonances. Mul-
tivaluedness of 4 is connected with the resonant ef. Also, there are inter-
vals where A{(«) is an empty set for all /, i (see Section 2). We show in
Fig. 7 two resonant e.f. whose essential support consists of two points Z =
{0, r}. In this situation H®)(«) does not have e.f. or almost e.f. whose e.s. is
the point ¢, or the operator H*)(« — w, 1) does not have ef. or almost e.f.
whose e.s. contains O and lies to the right of 0. This effect was already
explained in Section 2.

4. GENERAL THEOREMS OF PERTURBATION THEORY

We consider the operator H)(a) [see (1.1)]. Assume that there are
given periodic normed functions ¢{), 1<i<gq,, with the period ¢, such
that:

(ap) For each @) an es. Z(¢)) is defined,

diam Z($$) < C(In 1/2) ' 5
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(a,) The foliowing holds:
(:)(n)| < (Cg)dxst(n Z((p(j,))

(a2) @yNm)=0if

dist(n, Z(¢)) > [ 2311111(1133)] +2

(a;) We have

— 1
|((pa119 q)oczz)~ 1112|<q 3/2 C(lﬂ@)

(as) For each i a number AY) is given for which

(HP(o) EN(n) — A5} LNn) < g2+

l

The properties (a,), (a,) show the sense in which the functions ¢{’) are
concentrated near e.s. The property (a;) means that the set of functions
{@{)} is an almost orthogonal basis. The property (a,) shows that ¢{} is
an almost e.f.

We denote by ¢} the function that coincides with ¢¢) for those n for
which

) 3Ing,
dist(n, Z(¢$))) < [2 o 8‘1]

and is equal to zero for other n. Put Z(¢$)) = Z(p{)). We have
HO(x) @) = 28)08) 4 ') 4 hE) (4.1)

Here A)(n) =0 if

dist(n, Z(¢®))) > [ 3 lnsqfl} +1

and |A{)(n)| <const-g-2*?% for other n. The vector It} is defined as
follows:
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1. If z is such that

dist(z, Z(@{))) = [

dist(z + 1, Z(p)) = [ 3lng, } 1

then
Iilz)= —e@Cz+1);  I'Slz+1)= —epl)(z)

2. If z is such that
3ing,
dist(z, Z(o®) s
ist(z, Z(o)) = [MI/J

3lnq5]

dist(z— 1, Z(o{))) = [2 n1/e

then

Iiz)= —epfiz—1);  TPNz—1)= —epllz)
In all other cases I'{")(n) = 0. If there are two z for which condition 1 holds,
then I"{’)(n) is nonzero at four points and so on.

Definition 1. An almost e.v. 4§ is nonresonant if for all j#i

1
FTdis(Z (o0, Z(gbhie T4

—l+ce(lneg)”

4) 28 > T

Theorem 1. Assume that A{) is a nonresonant ev. Then the
operator H{)(«) has an exact e.f. W" which can be written in the form

ol

Yl =8+ oY)+ ooy s)

where:
) TE+RE), o8
(b)) W)= g e 95
J#i a,i o,

(by) |80y C)m)| < g 2+<Mmo™  forall n

If u{) is the corresponding e.v., then

1 —1
1) — L)+ (1), ) + (), o) ]| < g2+ (m )
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Proof. Write the e.f. () in the form

w(s)_ (S)+ Z X; Q)(S)

J#Ei

Then for the unknown e.v. y and the unknown coefficients x; we have the
following set of equations:

p=AS+gi+hy+ Y x,(g+hy) (4.2)
J#Ei
(—2=gy—hy) x;+ Y x(g,+h ) =g5+hy (4.3)
JL# i

The coefficients g, h; are found from the expansions
réd=% g;0%)

hg) =2 hyol)
J

First we consider (4.3) assuming that u is a free parameter. Rewrite (4.3) in
the operator form:

(D—F)yx=f (4.4)

where fis the vector with the components git+h,

;> D is the diagonal matrix
with the matrix elements (4~ 4;—g,—h;) 0;, and F is the matrix with the

matrix elements f; =g, ;+ hjl I If Dis 1nvert1ble, we have from (4.4)
(I—-D 'F)x=D"'f (4.5)

If the norm ||D~'F| <1, we can write the solution of (4.5) as the
Neumann series

x=D"Y+D 'FD 'Y+ D 'FD 'FD 'f+ - (4.6)
In Appendix A we show that
|yl < q72+61~<m7 1)(3/2+ c(In £)~1/2) 4.7)
|g| < g etn ) (477)
where m is found from the inequalities

3lng,
2Ineg~

<m—1)[ ] dist(Z()), Z(ol) < [ ‘“ﬂ

21n 1/e

822/46/5-6-6
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This immediately implies that if
|# /l(s)| 1 7l—c(lne) f
then
ID~*| < const - g} —<tne)”!
and
|D~'F| <const - g1/~ 2<tne)!
Thus the solution (4.6) really exists.

The components %; of the vector D ~'f have the form x,= (gy+hy)
(p—A5). Weput g, = (I”‘*) D)+ gl and hy= (hE), 0&)) + kY and define

dl’

oy &) according to (b,) while the rest is equal to

(Lol +h3), oS =23
56‘#;1 = Z s : K > s (pf(:)
(A8 =280 =A%) g

J

) hee) &

(1) (s
+zgu qo(s) Z (s) Z ~1F Alf; QD)

where ¢ means the vector {@{), j#1}.

The estimation of each of these terms is straightforward. In the first
sum Y’ we have only terms for which

1 —1
dist(Z(e$)), (¢§f}))<const-<lng> ‘S

The nonresonant condition implies that the denominator is not less than
const - 5. The total estimation for 3" follows from the fact that for every n
the number of almost ef. @) for which ne Z(¢)) and # is the left boun-
dary of Z(¢%)) is not more than const - s — 20. ThlS is a direct consequence
of (a;). The estimations of the second and third sums 3® and 3°® follow
from the nonresonant condition and the estimations (4.7') and (4.7"). The
estimation of the fourth sum Y * is based upon the nonresonant condition
and the form of the vector f. In order to get the final estimations, one has
to take into account the direct uniform estimations of terms in the fourth
sum for k> 1 and more concrete estimations for k£ = 1.

Now denote the solution of (4.3) as x,(u). Obviously it is a continuous
function of u. Putting it into (4.2), we get the equation for u only. Our
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estimations for x,(u) and g, &, give easily the existence of at least one
solution of (4.2) in the considered neighborhood

|ﬂ_/1<s)‘ s%qA—c(lns)-l
2,1 s

Two or more solutions cannot exist, because the appearing e.f. would not
be orthogonal, being small perturbations of ¢&). §

In Theorems 2 and 3 we shall consider a resonant case. First we give
the following:

Definition 2. Assume that for two almost ev. 1) and i) the
following inequalities hold:

- 28 < :
i TRl 10 Tdist(Z(9f)), Z(982))1"°
+q;1+c<1ner‘ (4.87
[A0)— 28] > :
Otlk s10 [dlSt(Z(q)(s)) Z((pgtft)k))]lo

fgrlremoT k=12, j#i, i (4.8")

We shall call (A$), AL)) a simple resonant pair. This means that only

oI “va,ip

one difference of e.v. might be arbitrarily small while all others are large.

Theorem 2. Assume that (A7), A%)) is a simple resonant pair Then
the operator H{)(a) has two exact e.f, which we denote by y{) and

write in the form
l/Jc()tf()il,iz),-f— = A + (pcx #71 + B+ (pa( N3 + 6‘#;5()1'1,1'2),4’ + 55"[/9‘ (i, 5), +
Gy =4 q)‘s} +B_ o)+ oyl .+ 30p)

a,(i1,47), — o, a,(i1,ig), —

«,(i,i2}, =

a,(iy,i2), —
where:

(Cl) 5 g:()il,ig),ﬁ—

'S L) o6
:A Z ( at11+ ®,iy? qDac,j) (p(s)_
+ A06) i(s). a.J

J# LR x,11
76) 4 pls) (5)'

ot i o zz’
(s)
+B+ Z l(s) ‘“A(S) q)a(aj
FE2IN) a,iz L)

(s)
o, (i1, 82),

(I +heh, 08
_ (s)
=4_ 3 =0 L)

BERIN?) a,iy
L v TSR e

POy

J# i [R5
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(c;) The remainder terms 60yy), ., , and oy, ., satisfy the

. : i C P e inn), + o, (i 2
same estimations as in Theorem 1, i.e.,

‘5&//(:)‘ i (I’l)|, |55l//(s). . (n)i gq;2+c(1ngri

(i, 2), + (i1, i), —
(c;) Theev. u), ., and pu), ., satisfy the inequalities

s) '1551)1 + ’1&)32 gin T hili, + 8o T hiziz
Mo iy, + — 2 + 2

[(/15(15) /‘L:xlz+g1m +hlm gizizﬂhiziz)z

l\)|>—k

+ 4(gi|i2 + hiliz)(gizil + hizil)] 1/2} < qsi2+((ln S)‘l

{c,) The two-dimensional matrix

is an almost orthogonal matrix in the following sense:
|42 +B% —1|, |42 +B*> —1|,|A, A_+B,B_|<q 2+<na™
Proof. Look for an ef. ¢ in the following form:

¥=A¢ll + Bol)+ Y x;00)
J# L0
Then for the unknown x; and the corresponding e.v. u we have the system
of equations

(l(s) +gi1i1 +hi1i1 _l’l) + B(gizil + hizil)

1]
+ Z gﬂ]+hﬂl) 0 (49)
J# L0
Ao+ hiyn) + BOS) + gy + iy, — 1)
+ 3 x(gnthy)=0 (4.10)
J#E i
(A + g+ hy—p) x; + Y x(gnthy)
J1# i J

+A(g11j+h111)+B(g12]+hlzj)=0 (411)
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Again we first consider (4.11), assuming that 4, B, and u are parameters.

Denote by f; (f},) the vector with components g, ;+ 4, ; (g,,;+h;,) and
rewrite (4.11) in the operator form

Dx+ Fx=Af;, + Bf,
or
(I+D~'F)x=AD"f, + BD"'f,
Let p be such that
I — A0 = gl retnet

for all j#1i,, i,. Then the same arguments as in Theorem 1 are applied and
we can write the solution of (4.11) as the series

X=A[len+ S (= 1)D"'F¥ D! ]
k=1

-i—B[leiz—i— Z (=YD 'FD"! ,-Z:I
k=1
:Ayl.1 + By{.2 (4]2)

where y; (y,) is the vector

DY, + i (—=DXD'F)* D!
k=1

[D"‘f,-ﬁr S (~1){D'F) D! ]

whose components are denoted by y;, ; (y,,,). The expressions for dy&), .,
result if we put instead of x only the first term AD~'f; + BD'f,. The
estimation of the remainder terms is done in the same way as in Theorem 1.
The substitution of (4.12) into (4.9) and (4.10) gives the closed system of
equations for 4, B, and u:

A ':lgz)l + &gyt hilil + z yi]j(gjil + hjil) - .“J
J#iLn

+B[g,«2il+h,-2,-l+ 5 yiz,-<g,iz+h,-,-2>]=o (4.9)

J# i
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AI:gi1i2+hi1iz+ Z yilj(gjiz-l_hjiz):l

J#E i
+B l:/lgfl)z +8uit hi2i2 + Z yizj(gjiz + hjiz) - #] =0 (4.10")
J#iLh

Denote the matrix of the system (4.9'), (4.10") by S= s, k, /=1, 2. Then

s Syt [(51—82) 445,55 |7
Hoolin i)+ = 5 il: 7] (4.13)

From our estimations it follows easily that
$1 8 = A — A+ By
|ﬂ1| <q73/2—'2('(1n3)71
s
~3/2—2c -1
|S12|5 |s21| qu 3/2—2¢(Ine)
Thus, if
‘ —3/2—3c¢(Ineg)~!
|/1§Zl)1_)';s,)2| >qs / c(In &)

then we have in fact a nonresonant situation and the formulas of
Theorem 2 pass smoothly into the formulas of Theorem 1.

The form of exact ef. i changes essentially if i) and AJ) are suf-
ficiently close to each other and are far from the other A{’). Assume that

A e —3/2 —3¢(1 -1
M(s) _)ygl}zl gqs / c(In &)

«,11
From (4.1) it follows that
(H @) 08), 08))
=408, UL+ (T, @)+ (hE), 9l))
= gi]iz + hiliz + )‘gtft)l(q)z(xft)ﬂ qog:l)z) + 5gi1,iz
(HO(2) 98}, 98))
=iy + Moy +ASL(05), 08)) + 08l
For the remainder terms Jg, ,, and 6g{!) we have the estimations
gli, 2 i1,82
10,5l 10g§13] < g, 270

The self-adjointness of H{¥(«) implies

(H(@) oL, 02)) = (HP(2) @0, 08))
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ie.,
I(gizl] + hizil) - (gi1iz + hi1i2)| < qS_Z*ZC(lﬂ )~ !
Thus
12750 = (G + M) + B2y [P S g3t
The fact that both roots of (4.13) should be real follows from the self-
adjointness of H(a). |

We also need a slightly different version of Theorem 2. Assume that
there are k functions @', &) .. @) such that:

oy ? ouz’ 2 o, ig
(@) Z(el)=Z(el))+m,
—1
(as) m2>const-<1n—> s, my =zmy, =2, k-1
€
(a5) A3, =20
1
< ‘ +q71+c(1n6)
s+ [dist(Z(9l)), Z(eL)))]"

(@7) 128, = AL =g, k=1,2, >2

o,y o]

For other AY), j#iy, iy, i, we have the nonresonant inequalities of
Definition 1 w1th respect to all functions @), 1 </<k.

Theorem 3. The operator H*Y«) has two exact ef Y0, ¢} and
corresponding e.v. ugg)l, 1S} given by the same expressions and having the

same properties as in Theorem 2.
Proof of this theorem goes in the same way as that of Theorem 2.

Remark. The proofs of Theorems 1-3 can be performed without any
changes in the slightly more general situation that the intervals in which
@) are different from zero depend on i, s in a different way provided that
all other inequalities remain valid. For example, for the boundary points
we may have only
3lng,

dist(z;, Z(oLh) ~ 57 1/e

5. APPLICATION OF THE THEOREMS OF SECTION 4

Assume that @) coincides with an exact e.f. () for those n where @)
is different from zero. Then A$)=0 and in the nonresonant case our
procedure gives the same ¢ ¢). Thus we can write

)= ) r ﬁf,), %)) (s)
P8+ Y Tor 0, 10 L)+ 60y &) (5.1)

J#FEi
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Take z for which

dist(z, Z(¢$))) = [ 3 In qs]

dist(z— 1, Z(e{))) = [ 31ng, } +1

Then ¢{X(z—1)=0 and

F(s)’ ;o)
vie- =3 G pbe - Do 52
Ve

Recalling the form of I'{’}, we rewrite (5.2) as follows:

ple- 1= —aptz -1 3 L ele )

(S) (s)
J# ) ‘ id,j

)z —1)1?
~ae)

e

35, YNz —1)  (53)

(where the remainder term 60, (") satisfies the same inequalities as 66y/$)).
Let us introduce the truncated Green s function

P8Nx) 9PN y)

G§S)(x’ Yi A OC) = Z (s
A=)

J

Then from (5.3) we get

—eGP(z—1,z—1;2%), a) ()
146Gz, 2— 1,39, @) =
85,9z —1)

1 +eGi9(z, =1 s AS), a)

z—1)=

(5.4)

Put Uz 4, a)= —eG¥(z—1,z— 1, A, a)(1 +eG¥)(z, z— 1; A, «). We
have from (5.4)

86, p)z—1)

S5
1+eGE(z, z—1; %), @) (5:5)

SNz—1)=U"z 8L ) Yidz) +

This formula has a peculiar meaning. It shows that up to corresponding
terms the value y{)(z —1) is obtained from {)(z) by muitiplication by a
factor that depends primarily on ef. or almost ef. concentrated near the
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point z, ie., this factor is a function of the potential in the vicinity of z. A
similar representation is valid in resonant cases of Theorems 2 and 3.
Now let us take n=z in (5.1). Then y)}(z) = ¢ Xz) and

—ep SNz —1) Gz, z; AL), o) — ey $)(2)
x Gz —1,2;A8), a) + 30, z) =0 (5.6)
This gives another representation for ¥$)(z —1):

GUN(z—1,z; A, o)

s Mois

Valz—1)= i) GOz, 7; 200, )

80,Y2)(2)
)

MEAR. AL AN 57
eGN(z, z; AL), o) (57)

There is some visible difference between (5.4), (5.5), and (5.7). In (5.5)
the function U(z;4$), ) is proportional to e However, in (5.7),
Gz, z; AL), o) takes values of order of unity for typical o, while
G¥(z—1,z;AL), o) typically takes values of order of ¢ Thus, ¢ is also
present implicitly in (5.7).

In estimations of scalar products (¢{), ¢{)) we need other applications
of the Theorems of Section 4. Assume that for the operator H%'(x) the

sequence {¢°)} is given. Consider now the operator H*)(«') with

Ia_a[<q—-2 c(ine)~

Then the system of functions {@{)} satisfies all needed assumptions with
respect to H{*(a") and we can use it for the construction of e.f. of H!*)(a). It
is essential that

100} —pLl < g2 2 m

where ¢ is obtained from the exact ef. by the truncation to a suitable
neighborhoced of the e.s.

6. AN INDUCTIVE CONSTRUCTION OF
NONRESONANT EIGENFUNCTIONS OF H{*+"V(a)

Let us consider the operator H®*+Y(«). Using @*“)(0), we shall con-
struct a basis in which H¥*(a) is almost diagonal. This should be done
with some caution because @*(«) is a discontinuous function of «. The
simplest way is the following. We consider T~ ‘®(« + tw, , ,) for each ¢,
0<r<gq,.,, where T is the shift to the left. Each y e T~'®“N(a + tw,, ,)
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has its e.s. starting with ¢ and lying to the right of z. We would like to take
as the new basis the union

U 109+, )

Os1<gsst

However, some complications may appear. Indeed, assume that o e 4{ or
4) and there are two resonant ef. () and ¢§) with the same es. Z=
Z'uT "7 As was already explained, for o' =a+mw, there are no
corresponding e.f. belonging to & ().

It might happen that, due to the difference between w, and w, |, we
can have an extra function ¥ € @')(a + maw, , ;) which in fact is very close
to one of the functions ¢}, ). Certainly this is possible only for a very
close to the boundary of 4{) or 4§); more exactly, their distance to the
boundaries of these intervals should not be more than const-s’g; 2 In
order to avoid this doubling, we proceed as follows: if « +mw,, €4 }1) or
4¢) for some m, 0<m<gq,, ;, and some / and the es. of the corresponding
ef. or almost ef. is Z' U T~™Z for a finite subset Z' < Z' we take both e.f.
or almost ef belonging to ®“(x+mw,, ;) and do not take the
corresponding e.f. or almost e.f. of @) (a+ ma,, ). Thus, the whole set of

our functions is contained in

U T7e¥a+mw,,,)

Osm < gy

but we avoid in this way the functions that are not almost orthogonal to
each other. Now the index i labels all selected functions y, ie., y¥le
T~"®“Na + mw,, ). Denote also m=m,, o, = a+m;w, . Thus, T™)) is
an ef or almost ef. of H(a+m,w,, ). In all further considerations the
new phenomenon is the dependence of o, on i. For each {7} we put

P M=), distn Z0) <| S |42

Py V(n)=0, for other n

Z(pUFNy=Z(p)). The approximate ev. AJ'Y is equal to the
corresponding value of Ao+ m;w,, ;). The validity of (a,) in Section 4
follows from the definition of an almost e.v. (see §IV in Section 3 and the
next section) and from the inequality g, /g, <const-(s+1)>. We may
also assume that the inductive process starts with a sufficiently large s and
the constant C of §IV in Section 3 does not depend on ¢. As in Section 4 we
pass to the functions @+ 1.
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Lemma 1. The set of functions {¢{* "} is a basis in the space of
all periodic sequences of the period ¢, ;. It satisfies (a;) of Section 4.

Proof of the lemma is given in Appendix B. In this section we consider
a nonresonant case. Theorem 1 of Section 4 gives the existence of an exact
ef YD of HE+D(a), which can be written in the form

X X (ngi+l)+h;xi+1),(pis+l)) ,
W=t Y SR e 2 ot sop ) (61)
j Yo, i %, J

The last term will be treated systematically as a remainder term.
The sum in (6.1) is taken over such j that

31lng,
t (a+1 (a+1) < S
dist(Z (0. N Z(plr D)) <2 [2 n 1/8]

As in Section 5, take z for which

3lng,
21n 1/e

dist(z, Z(el ")) =[

31
dist(z — 1, Z(@ 1)) = [z hI:f/EJ

Then @{* V(z—1)=0 and from (6.1)

Yoz —1)= =iz — 1) Gz — 1, 2 4, a)
—epiNz) G Dz — 1,z — 13 AL), o) + 88,91 (6.2)

Here G+ (x, y; A, a) are truncated Green’s functions constructed with the
help of the functions ¢ ".

The difference between (6.2) and the formulas of Section 5 is due to
the fact that in (6.2) ef or almost ef. of H(«x) with different o enter.
However, this dependence also will be considered as a small correction. We
write

YTz = 1) = Uz 200, ) YLN2) + 00,95t D(z—1)  (6.3)

s Mais

Normally U%)(z; (), o) takes values of the order of unity and the correc-

tion is not more than g~ <97 If y()(z) is different from zero, we can
rewrite (6.3) as follows:

YOIz — 1) =y LU [UNz; 5], o) + 805yl Dz — 1)1 (6.4)
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This formula is quite analogous to (5.5). We can now use (5.3)-(5.5)
in order to get the values of y{** 1)(z) for other z with

. 3ing,
dist(z, Z(y ")) ~ [2 In f/Ejl

Let us consider also (6.1) for the same z as in (6.4). Then
VT I(E) = WEE) — sz —1) G (2 2 480, o)
~efiz) Gtz —1,2; AL, o) + 8.y (z)
=yz)— ez —1) Gz, z; AL), )

> Moy

& ;H( )G(A)(Z—l z AL )'*’557'#3,-“)(2)

sala

In the remainder terms 89,y and 66,y we included the errors
arising from 4{) and the differences between G**' and G!. Using (5.6),
we have

Y (2) =yliz) + 855y S H(z) (6.5)
Lemma 2:
|55 (3+1 ( )| gq;Z——c(lna)'l

Proof of this lemma is straightforward. The formula (6.5) shows that
Y $F V(z) differs from y$)(z) by a small correction. If

WEH2)| > g2 etne
then
YOr(2) =Y )[ 1+ 88,9 8)(z) (6.6)
Similar arguments work at points n where
dist(n, Z(y)) < dist(z, Z(¥1)))

They mean that the corrections to e.f. at points » within the considered
neighborhoods of the e.s. are of order of g, 2= <("9™" and thus the values of
ef. converge exponentially rapidly to limits.

7. A MECHANISM OF DECAY OF EIGENFUNCTIONS

In this section we shall derive the exponential decay of the e.f. Y.
In doing this we shall also get estimations from below for e.f. valid at most
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points. Assume that for all 1, 5, <r<s,, we have a sequence of e.f. ') and
corresponding e.v. 1Y), s, —s, ~ps, p a constant. In fact, i depends on ¢,
but we do not incorporate that now. In this section we consider a non-
resonant case, i.e., we assume that all /) are constructed with the help of
Theorem 1 of Section 4. In fact, the difference between the resonant and
nonresonant cases is not important here.

In the interval [s,, s,] take those "€ [s,, s,], 1 <I<r, where

310 ¢,(0)
0 Ay e
Y [2ln 1/¢ Y
and consider the points z?, 1</<r, where zY*"<z and

dist(z'", Z(p V) =y, z, =2z, z, =z Assume that s, =", 5, = 1. We
have

r—1 (£ ()
e I‘[ _YaE)
o (,(1 1))(Z(l)+ 1)

S R (.1)

Az <o '/’i’,(i“)( +1)

Some danger comes from factors that are too large or too small. If, for
example,

W= D) < 3ol2 + max V(@) ]~

then from the equation for the e.f. written at z—1 we have

Wz =2 0(2) = i)z = 2) D (z — 1)
X YOz — 1) (z)]

and
IS W2 ENE) <4 (7.2)
The same inequality is valid for
OO + 1)
as will be shown later. Now we consider the product

I= J] U“z; A, @)

<z
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where we put 4, = A{Y. Recall that (see Section 5)

G‘”(z——l z—1; 4, %)

U 'l,
(24, )= 1+8G(“(z,z~1 A, o)

Lemma 4. Let X< {z,, z,] be the set of those z for which

1
GOz~-1,z—1;4, a)_/l—V((z—l)w ) <c0nst-\/g
51

|Gz, z— 1; A, «)| < const
Then

card(X) > (1 —const - £"/*)(z, — z,)

Before giving the proof of the lemma, we shall derive from it the

exponential decay of ef In our situation we can apply Theorem ! and
(5.4). This yields

5 W(Jl)(z) .
M= 1 gy e

- n S})(Z)

ZG[Zan]nxm
YiP(z)
X lp(él (z,)
*c—:[zlz—ll]\x 2z +1) !
=011, 30(zy)

By definition, we include in [7, the terms where

(él)(z)

3 —1
W)(Hl)’ <3 [+ max [V(2)]]

and the next ones. Remark that if

l vE)

1#“”(2—{-1) [1+max|V( N

then from the equality for the e.f with the e.v. E
Yir(z+2)
Y (z+1)

‘Wm z+z)\ y
- (s1) 'll(”)(2+ 1)

(51)
a,i




1D Difference Schrodinger Operator 891

< 1+maxf,CIV(ac)|~l~|El & :IE
\[ 8[ 1+ max, | V()18

x [1+max [V(x)]]"!

- 5e[1+max, |V(x)]] !
= 32

<j- [1+max |¥(2)[]""

i.c., these terms enter into I1,. Therefore, for z belonging to 17, we have
(P(z) | 401+ max, V()]

Yoz +1)]

and for the whole product I7, we have a trivial estimation

4227‘71 {4[1 +max1 IV(OC)|]}(ZZ“ZI)'COHSLE
s

&
41 +max, | V()]

&

< 1

Y. {4[1 +max, IV(oz)l]}“’"‘””'”“s”
&

(7.3)

which follows from (7.2) if we unite small factors in pairs and, following
them, large factors.
From (7.3) we see that for z + 1 € X the value

Iwg{ill)(z)l > qs—3/2+const(ln g)1
and from (5.4) for such z +1

Yere) £
\ YeP(z+1) A —Vizo, +oy)

<const- ¢’

Thus, assuming that z,e X, we have the estimations from both sides for

‘//Lf})(zz):
1 zy— 1) €
<Z 8> exp [_ConSt'm(Zl ~—22):l
gzs,,")(zz)
= Wés:)(zl)

1/4
< (de)1 =2 exp [const %ﬁg (z,— ZZ)J (7.4)
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The eigenfunctions {')(z) with variable ¢ differ from ¢/ {¥(z) by terms not
more than ¢, >~ <U"9~" This follows again from Theorem 1 and Sections 5
and 6. Thus, we get the exponential decay of the value of $?(z,) and in
the same way the exponential decay in other points.

Proof of Lemma 4. From the definitions,
U(Sl)(Z; /'{1’ OC) = U(“)(zl, 119 o+ ws(Z“Zl))

Thus, we have to show that the needed estimations hold for most z. We
shall use some information concerning the r.z. (see Sections 3, 4, and 8; in
fact, Section 8 is independent of Section 7 and the reader interested in
details can read Section 8 before this proof). Each r.z. is an interval 4§,
i=1,4, on the o axis. Let us denote its range and width by r and m. We
have a chain of intervals
A(l) DA(A DA(;“" h DA}SW))—_—L”X-’)
1.4y —Lim—1 mim »

where s, = s >s" D> ... > 5@ > U= Fg are the numbers of steps of
our procedure where the e.s. of the corresponding functions changes. The

. kyy - . - . .
next interval A}ksfik’) is contained in the intersection

A(S(k—n) ﬁRm(k H(A(Sk H) )

Be— 1.0k -1 Te— 15k —1

Thus,

(k=1)) | —1/4
mk>Mlk I’k)ll /

as can be easily derived from the properties of w; here |-| means the length.
Also it follows from the construction that

4

o] < (comst - g)™

and thus

|43 < (const - g)¥amZ

card{4{?V| diam Z = t) <exp(const - 1)

for some y < 1. In fact, the last inequality can be given more exactly.

Let us call the r.z. A3 large if | 4P| > es~?, where 2 will be specified
later. Other r.z. are called small. Small r.z. have the following important
property:

A. For each small rz. 4{}) the number of z among z,<z<z, for
which o+ w(z —z,)€ 4§ is not more than 1.
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The large r.z. have the following property:
B. The number of z among z, <z <z, for which

! 5
atawlz—z)e |J RLAR
{l<2diam Z

is not more than
2(diam Z)[(z, — z,) |[4{P] +1n° 5]

Here Z is the es. of the corresponding ef. for ae 4§
Property B and previous estimations yield:
C. The number of z among z, < z < z, for which

ao+wlz—z)e U Rl AFY

/| €2diam Z
for at least one large r.z. is not more than
const - &(z; —z,) +exp{const- (Ins,)"}

for some y, < 1.
Indeed, this number is estimated from above by the sum

(z, *'Zz)z/ |40 +Nln’s,

where 3" is the sum over large r.z. and N is the total number of large r.z.
From what was said above it follows that N<exp[(lns,)"] for some
yy<1and X' [4$)| <const-e.
Let us take z not satisfying property C. We have U“(z; 2, a)=
_pg 51 ( e
eu(z; 4y, a),

Nz A, ) =Gz =1z~ 1; A, 0)[1 +eGE(z— 1, z; 4y, )] !

We shall investigate the first factor; the second one is treated in a similar
way. Let us write

GéNz—1,z—1; 2, 0)
_y Lok = T
J A= 253
s 2
[ogi(z—1)]

,‘11 — Alsy)

‘o,

(7.4)

=2 )

r20 jdisqZ(ef)z—1)=r

822/46/5-6-7
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First we consider the term with » = 0. Our assumptions and definitions give
that either « is outside all r.z. or it is contained in a small r.z. 4.

In the first case the value r =0 corresponds to only one @V for which
Z(plY)=z—1 and thus ¢$)(z—1)=1-const-& Our procedure also
shows that the shift in the e.v. from the unperturbed e.v. V(zw,+ 2) is not
more than const - .

In the second case our procedure gives the existence of two resonant
functions @) and @¢*) whose e.s. has the form

1 —1
Z=(z—-1ulz—1+m), m>@const~<ln—> In s,
£

These functions can be written in the form
QDS}{ =ap Y, +api,
(Py}; =ay¥+any,
where the matrix

a; dp

ay dxn

differs from an orthogonal matrix to an error that is not more than
(const-&)" < s ™" % and the functions ¥, and ¥, are concentrated near
(z—1) and (z— 1 +m), respectively, in the sense that

Y (z—1)>1-—const-e, I, (n)| < (const - g)distm=— 1)
Yo(z—14+m)=1—const-¢

|l//( ) (COHSt 8)dist(n,:'71+m)

From these estimations and the nonresonant condition it follows easily that

[0.1(z—=1)1"  [@a,(z— D]

2y — AGD + J, — 0D

%, J1 o, J2
a“ + a3, 2
=7, /Atm)l//l(z——l)qtan error
o, J1

and the error is not more than s~ °™* 2 Thus, again the value of the sum
differs from 1/{A, — V[(z—1) w,+a]} to an error not more than const - ¢.

Our next step is to prove that the rest of the sum (7.4) with >0 is
relatively small. The main idea is to show that for typical z— 1 the
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denominators decrease more slowly than the numerators, thus making all
terms smaller and smaller.
To give more precise arguments, let us consider for each r those
(z — 1) for which
min |4, — 20| > /e r 1

(15)
ji dist(Z(@fY), z—1)=r

The same arguments as above show that in this case

J= 5 Loi(z—- DT

A= A%y

U dist(Z( )z — 1) =r

<(const &) ' e (r—1)"°

Therefore 3., ., J, < const- \/E We have to investigate only the cardinality
of (z—1) for which (7.5) holds. Recall the structure of the multivalued
function 4%, Its range is a union of intervals separated by fz. The length
of each interval is not more than

const - g, ! ~<One)™!
Introduce neighborhoods O,(1;) whose radii are contained between

\/E r " and 2 \/E r 1% and whose endpoints are endpoints of f.z. For such
neighborhoods, (4“))~'Y(0,(4,))=A4,(A,) is a union of two intervals. As

follows from the inductive hypothesis of Section 3, [4,(4,)] <const - &'/ ~>.
If z—1 is such that
a+ o, ¢A,(4,) forall ¢ |t—(z—1)| <r (7.6)

and r = 1, then (7.5) is valid. The cardinality of z, for which o+ tw € 4,(4)
for at least one 1, |t — (z—1)| <r, is not more than const-&"*r~*(z, — z,).
Thus, provided that r<(z, —z,)** the cardinality of (z—1) for which
(7.5) is violated for at least one ¢ and r < (z; —z,)** is more than const-
ez, —zy). If r>(z,—z)¥ and a+itw,ed (i) for some 1
[t —(z~ 1)} €r, then it would violate the nonresonance condition. |

The estimation of the product in (7.1) is the key to the proof of the
total exponential decay of e.f. We decompose the whole interval [z, Z] onto
subintervals [z;, z,, 11, 2=2¢, 2z, ., = Z, 1 €i<r, and z lies to the left of the
es.; Z is the left boundary of Z(y)). In each subinterval we include the
dependence of the e.v. and the phase on the step of the procedure into the
remainder term. The estimation of 7 in Lemma 4 shows that

In |1 N 1 Z,ln 1
212, 122 4, =V[(z—1)o,+a]]

Ineg+ (7.7)
z
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where 3" means that the summation goes over z for which the absolute
value of the corresponding logarithm is not more than In(1/¢) + const. The
statement of Lemma 4 shows that the frequency of such z is large. Thus,
the last term in (7.7) is bounded and for sufficiently small ¢ the main term
is In &. This gives the exponential decay at final points z of the considered
neighborhoods. This character of decay is not changed in other points
because the corrections are of the order of g2~ <"~ as is explained in
Section 5. Such smallness has no influence on the smallness of the main
estimation of the ef.

The formula (7.7) is close in spirit to the well-known Thouless formula
for the Liapunov exponent.®? In fact, (7.7) gives, in the main order in &,
the Thouless formula. Apparently the decay of ef. is determined completely
by the Thouless formula, but it depends on terms of higher order in ¢, for
which it is difficult to follow.

8. AN INDUCTIVE CONSTRUCTION AND EXPONENTIAL
DECAY OF THE RESONANT EIGENFUNCTIONS

We use the same basis {¢{;* !} as in the beginning of Section 6 (see
Lemma 1) and corresponding e.v. or almost e.v. 14" 1. We shall discuss in
this section the following topics.

1. The behavior under the transition s-— s+ 1 of the already con-
structed f.z.

2. The appearance and the width of the new f.z.
3. The construction of small r.z. and corresponding almost e.f.

4. The exponential decay of the resonant e.f. and almost ef.

Before doing this we introduce some notations. We consider for each ¢
the points & =a(z, /, i), 1<i<4, where AP (&)= A (% + tw, ;) and their
neighborhoods O(&) and U(&), U(a) = O(&), whose radii are equal, respec-
tively, to ¢, 2 and (s° +4°)~". Let us show that the neighborhoods U(&)
appearing for different ¢ and fixed /, i do not intersect each other. Indeed, if
for some &,, &, we would have U(&@,) n U(d,) # &, then |&, — &,| <2q,; 7.

Denoting by 7, ¢, the corresponding shifts for &,, &,, we can write
AN+ myo ) — APNE)]
= |A{N(@,) — A{(d,)] < const - g

Therefore, either

dist(®, + t,w, 1, &) <const- g >
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or
dist(d, + 1,0, 4, &, + 1,0, ) <const- g
in view of the inductive assumptions §L.1 in Section 3. Thus, either
dist(t,w,. , Z') < const - g3/
or
dist((t,—1,) w, ., Z') < const-q

Both inequalities contradict properties of w,, , and this implies the desired
result.

For each « and /, i take the maximal set &, &,,..., &z, &= Ax(?;, L, i),
1 <bh<k, such that xe O(d,) N O(&,) N --- N O(&), |O(&,)] = 2(s° + 1) 3,
t,<ty< - <t It follows easily from the construction (see also Sec-
tion 9) that ¢,, > ¢2 Thus, we can usec Theorem 3 and the inequality & <
const - In s.

1. Behavior of already constructed f.z. Consider the case when 4§71,
ALV e A a+ 1w, ) with the same 1, ie., the corresponding exact e.f.
that generated (), @+ V) were resonant e.f. Then Theorems 2-4 give the
form of the exact ef for H**Y(a). Comparing the expressions for the e.v.
written at the sth step a la Section 5 and the expression written at the
(s + 1)th step, which takes into account the perturbation terms h(””, we
1mmedlately see that the error in the ev. ulF ", u*" is not more than
g 2o This shows also that if the width of fz. is bigger than ¢_2+%
and &, > c(In 1/¢) ™, then the position and the size of the new fz. change
relatively little.

The e.s. of the new e.f. is not changed and the formulas for the values
of ef. at new points are the same, up to some remainder terms, as in the
nonresonant cases. Thus, the mechanism for the exponential decay of e.f.
investigated in Section 7 works in the same manner.

2. Appearence of the new fz. According to our construction (III in
Section 3), we define at the sth step small r.z. if r> (2—6,)Ing, (In i/e)~!
In passing from s — s+ 1 there might appear ¢ for which

1 -1 1 —1
(2—51)lnqs(lng> <t<(2—51)lnqs+1<ln—>
g

For these ¢ take 2 =4(z, /, i) and the neighborhood O(&). For a e O(a) we
can use Theorems 2 and 3, which give the expressions for the new resonant
e.f. and e.v. We have to investigate the width of the new fz. and in par-
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ticular to show that it is different from zero. This would mean that in our
problem there are no potentials with a finite number of f.z., provided that ¢
is small enough.

The values of the exact e.v. are given by formula (4.1) or its analogs in
Theorem 3. The function s,, — s, changes its sign with the change of « in
view of our inductive assumptions. Thus, the width of the new fz. is deter-
mined by the product s,,-s,,. We showed in Section4 that s,,-5,, =
(i + hisy) + 02, where |5, < g 27 20n9™" Also, it was already estimated
that |, |<gq; 2" “™9"", We have

un=(I'SL, @8l + 05, |5 <gq 2 o

o012 iy

iy

Denote by z and z + 1 the points lying between Z(¢$)) and Z(¢{)) where
I'$) is different from zero. Then

(g o0l = —elofh(2) oz + D+ ol (z+ D oll(z)]  (8.1)
Rewrite (8.1) using (6.4):
(), oflh)
= —epPl(2) L)L (U (2 + L AG), )+ UW(z; 20}, 001+ 05 (8.2)

where §, is again a remainder term. Now we shall use the remark made in
Section 4. Namely, the boundary where we make the cutoff of ¢{} is not
rigid. We can replace z by any point z' in the interval

1 —1
|z—z’|<o(l)<lnz> S, o(1)—»0 as e-0

and all estimations will remain valid. As was shown in Section 7, among
these points z’ a relatively dense set consists of points z” where

|(p(s} (Zl)| 2 qs—3/2 +e(ing)!

o, iy
‘(p(:) (Z’)| > q;/Z—— 51+ Inc(lne)

2,1y

Here one has to use the inequalities

1 —1
<lIn g, (ln;) o(1)

3
dist(z', Z(o))) + 51ng, (In e)”!

dist(z’, Z(e§)) + (% — 51> Ing,(lng)! ‘

-1
<lnq5<ln%> o(1), o{1)-0 as -0
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and the estimations from below of ¢, ¢ '), which were in fact derived in
Section 7 and are also valid here because the formulas for the values of e.f.
at new points are the same in the resonant and nonresonant cases. Also, it
was shown in Section 7 that for a relatively dense set of z’' for each function
Uz 4+ 1; 28) ), UW(z'; A8), o) we have

%02 a,i1?

0 <const < | Uz + 1; AL), a) + UY(z; A8), a)| < const

Vot,in? A,

Thus, if in (8.2) we take a typical z’ for which all written estimations hold,
then we get the estimation of the width of the new r.z., which is not less
than g; > +°M)_ For the ef. " we put

ZWer ) =Z(eLlyo T'Z(e))

«,1] &1

3. Construction of small r.z. and corresponding almost e.f. For each
t, 1,4,

1 -1
>(2~51>lnqs+l(ln;)

we consider &(z, /, i) and take neighborhoods O,(#) of radius g, (2%~ 3m2
where

3 A ;3 N
2—6,+smllng,(In-) <t<|2-6,+5(m+1)|lng,|in-
2 g 2 ¢

These neighborhoods do not overlap for fixed / . We can use Theorem 2
or 3 of Section 4 for the construction of exact e.f. Now we shall perform an
operation that can be called a cut of the e.f. Namely, the exact e.f. is written
in the form

(5 + hG) | o)
¢(5+” =A+<(p(5)+ Z Otli 115(p )(p(s),>

a,(i1,i2). a,iy o, j
JF#E iDL j‘gcsl}l }gcb;
(F) + b))
(s) B2 %7 TS o) (s)
( oztz+ Z A6) () Paj +55¢a,(i1,i2)
FERIN] %17 o, j

(I'S)+hE), )
(s+1) _ o, o012
Ve, - = A (‘/’au + 2 AL =28 q)&})

J#EILD al[

(I'S) +hE), 90))
(s) o, a,iy? 5
+ B <(pa,i2 + Z /’{(g) i(s)' (Etf)) + 65'//&,()1'1,1'2)
&, ]

J#E LR %02
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where 56!//06(11 ).+ are the remainder terms. We take as almost ef. the
expressions

[’(S) h(f) (s)
(s+1) — Z “11+ ,1,(0 ) (S)
(pa,il (poz L (s) . (s (P
A A6
J#i %, o,
1 +1
=4 ‘//S(Jﬂ i;) + +4_ ‘/’S(il ,2) + -
) +h(5) (A))
1 alz 5(12’ )
ovy =00+ Z o) — 7 @5
y) AL
Jj#ED o0 o, f

=BV T B+
where dots mean the remainder terms. For the approximate e.v. we take

1

A%i- _|..A27 [Az (}“g“&l)l +hl(;)ll —i_g‘ilxil)q’—[42 (AgtAl)z_’_hgzsl)z—*—giziz)]
1
B2+ +Bz_ [Bz (/lgfsl)l+hllll+gllll)+32 (j'( +h1212+g1212)]

4. The exponential decay of the resonant ef. is investigated in the
same manner as in the resonant case, because the formulas for the con-
tinuation of the exact e.f. are the same up to some correcting terms.

9. AN OUTLOOK ON THE WHOLE INDUCTIVE
PROCEDURE AND THE ANALYSIS OF THE
PROPERTIES OF As+V)(a)

As noted in Section 1, our analysis is based upon the renormalization
group approach. Take HU*'(a). For any x, —iq,,  <x<iq,,,, we
remark that on the interval |z — x| < const - s the operator H*+ D(x) is close
to the operator 7~ *H{ (o + xw, . ) T~ and the difference is of an order of
magnitude not more than g%~ <7, This follows from the properties of the
rotation number « and the smoothness of the potential. If, in view of the
inductive assumptions, we know the structure and the localization proper-
ties of e.f. or almost ef. of all operators H)(«), then we make the cutoff of
all these functions considering their restrictions to the intervals of order
31ng, (In1/e) "' centered at the e.s. of the functions. If the values of e.f. or
almost ef. decay as (Ce)", where n is the distance to the e.s., then for typical
n the values of e.f. or almost ef. at the ends of the intervals are of the order

; ¥2- <ol This important statement is proven in Section 7 and the
corresponding inequalities are in fact valid from both sides at most points.
In passing from s—s+1 we consider for each x the operator
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H®) o+ w,, x) and take ef. or almost e.f. () for which the e.s. lies

o+ Ws 1%,

to the right of zero and contains zero. From our procedure it follows that
1 —1
diam(Z(y{))) < const - <ln E) s

and therefore their choice is free of any contradictions arising from periodic
boundary conditions. Then we take 7"y} , .. and make its cutoff in

the manner described above: Denote by ¢! the functions of the basis
thus obtained. We have

H(s+1)(a) (p(s+1)'—/t(s+1)§0(s+l)+F(S+1)+/’l{s+“

The vector I'’ +') is concentrated at quite a few pomts normally four, and
there has typlcally small values of order g, }2*<# ™" The vector RS D s
different from zero on the interval where @{V is different from zero ie.,
on the interval whose length is of the order of const- (In 1/¢) ™' s and there
takes values not more than g;2=<® ™" Thus, ¢! is also a “local vec-
tor.” '

Now we construct exact e.f. of H* () using the formulas of the per-
turbation theory derived in Section 4. The simplest situation arises in the
nonresonant case, which takes place for most «. For a given ¢{*! in the
nonresonant case the difference [1"" — AL V| can become small only if
the distance between Z(o{;* ") and Z(p{ ") is sufficiently large. The for-
mulas of Section 4 give in the nonresonant case the representation of the
exact e.f. in the form

W””_(ﬂ(””-i—&l) A+l)+56(p(é+l)

The remainder term 6d¢{* ) is small everywhere and only plays the role of
a small correction. The term d¢{"V gives the main correction. It is small
on the set where ¢! is different from zero and coincides with the e.f. at
the boundary. More precisely, it has there an order not more than
g, 2~ <) Its form is essential near the boundary, where it really shows
how the process of continuation of the e.f. looks. We have derived in Sec-
tions 4-6 formulas that imply that the value of the ef. at the next point is
equal to the product of the value of the e.f. at the previous point and some
factor U that depends essentially on the e.f. concentrated near this point
plus some corrections. As a result, we get that in the Anderson localization
regime with exponential decay of e.f. the values of e.f can be represented as
some products of “local” functions, plus small corrections.

These correcting terms, which are always small, become important
when the value of the e.f. is anomalously small. Using the equality for the
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ef, we see immediately in this case that the values of the ef in the
neighboring points are almost the same up to the sign. This gives a
possibility of obtaining a convenient expression for the continued e.f. that is
“uniformly good” for all values of U, because the ef. is too small or too
large when U becomes too large or too small at the corresponding points.
Using this fact, we get in Section 7 estimations of e.f. from below.

In the resonant case some eigenvalues A+ may be too close to each
other compared with the distances to their e.s. It is important that only two
of them may be too close. This is a direct consequence of the fact that the
potential V takes each value at not more than two points. Now one has to
distinguish two cases. In the first case for A" ! there are no other A{; "
that might be too close to it. Here we use Theorem 3, which shows that the
exact ef looks as in the nonresonant case. If there is one pair of ev.
A1, Al 1 whose difference is too small (in fact, less than g, ! +<0ne)™,
then two ef might appear of a new form, which are, in the main order,
linear combinations of @+, i+, The coefficients of these linear com-
binations depend on the distance between the e.s. of @D and @fF Y and
the matrix of the coefficients is close to an orthogonal two-dimensional
matrix. Two eigenvalues of corresponding ef. differ by a number also
depending on the same distance. The intervals on the spectral axis between
these numbers give rise to forbidden zones (f.z. or gaps). We choose the
value of the parameter measuring the distance between e.s. in such a way
that its length is of order ¢ 2*%. Here &, must be much greater than
c(In 1/e) ™', but much less than 1. In this case the perturbations appearing
for increasing s do not destroy the fz. and at the same time are so small
that we still can use the formulas of perturbation theory. The values of new
ef. in the resonant case are obtained with the help of the same “local
functions” as in the nonresonant case. Therefore the analysis of the decay
of the resonant ef. is the same as in the nonresonant case. If the distance
between the e.s. of resonant e.f. is too great, then it is technically more con-
venient to pass to approximate e.f that are e.f. up to precision g2+, This
is achieved by an operation of taking a cut of e.f. The width of the gap here
is as small as the correction to the potential under the transition s —» s+ 1
and therefore we have no possibility to estimate it in a sufficiently precise
way.

Thus, our construction gives directly the new functions A%“*1(a),
@+ V(). We have to investigate their properties. As was shown in Sec-
tion 8, the boundaries of already constructed fz. shift only a relatively
small distance. From Section 8 the character of appearence of new f.z. also
follows. This gives us new intervals [a,, b,] (see Section 3). In order to con-
struct other points ¢,, d, we have to investigate the smooth properties of
A+ D(g). This is done below.
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For simplicity we consider the situation of Theorem 2. The equation
for the new eigenvalue u has the form [see (4.9'), (4.13)]

LAY o) = o by(o, i) LAD(@) = o+ byl )]

+ [&12(2) + oo, p) 1[0 () + by (2, u)]=0 (9.1)
Here we use the following notations:

A (s) s
A ( ) ii 11+gi1i1+hi1i1

Z(S)(a+mws+l)_/L112+gtzlz+h

i21

glz(“)zgizil"'him’ gZI(a)zgi1i2+hi1iz

bkla 11 Zylk] gjll+hjl[) k,l=1,2

We recall that y; also depend on . All terms b,, and their derivatives will
be treated as small corrections. Differentiating (9.1), we have, with p' =
dy/de,

A 0 ob
(F 2w G P ) (394 )= )

do da ou

W—==+u

dA® (o0 + mo, . ) _ 0by |, 0by
do do ou

+[A‘“>(a>~u+bu](

(82,20, o

de de | op ,u’) [g0(a)+ by (o, )]

dg, () 0by abz1>
du + oa T ou

We derive from it the expression for u':

+ [ &) + (e, 1) ] (

dA® () AN+ me,, ) —p

i

w= p -
de Ao+ mo, )+ A9 (2) —2u
dAe A _
LAt mo,. ) ()~ . o)
do ANa+maw, )+ A (o) —2u

where the dots mean again terms of smaller order. This expression shows
that, in the main order, u’ is a linear combination of dA“(a)/dx and
dA o + maw, , |)/dx with the weights

_ AN a+mo,, ) —p

- ANa+maw, )+ A9 (x) —2u
B AN o) — p

- ANa+mo,, )+ A9 (a) —2u
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Also, from (4.13) and Section 8 it follows that p >0, g=0, p+g=1. Now
for the second derivative we have the expression

”n

) AN o+ mo, ) —u
de? a4+ mo,, )+ A9(0)— 2u

+d2/T(”(O€+mws+1) ANa)—p
dot* A @+ mo, )+ A9() - 2p
v (dﬂ(s’(a)_ﬂ,><dﬂ(”(oc +mws+1)~#,>
dot do.
1

X — — +
AN+ mw,, )+ A (a)

Again the dots mean small corrections. Further,

@), (dA0@) dAVetmo,, )|
do w=ia do de
dA o +mow,, ;) dA o+ mo, . ) dAY(x)
—u'=p - +
do do do.

Putting these expressions into the previous formula, we get

_d?A%(a) ANa+ma, 1)~ u
de? Ao+ mo,, )+ A1) —2u
N d*A9(a) ANa) — p
d2* Ao+ mo, )+ A9 (@) — 2
dA® ‘ dA (a)\?
—2pq< (e +mw, ) (“))

"

do do
t

X — — + (9.3)

AN+ mog, )+ A9 (2) —2u

The most important term in this expression is
29 (d/T(”(oc +mw;, ) d/T“"(oc))2 t
dot da ANa+moy )+ A (e) —2u

9.4)

The difference
ld/T(S’(a+ma)H1) dA%) (o)
| do do

5

=const s
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as follows from the inductive hypothesis I in Section 3. Consider the branch
of u that is bigger than [ A“Na+mw, )+ A“(x)], ie., the sign in the
square root giving the expression for u (see Section 4) is positive. Then the
minimal value of u defines a boundary a,. We define ¢, in such a way that
min(p, g) > q,;, and ¢, is the largest number for which this property holds.
If o', «” are such that AC*D(a')= A" V(a")=¢,, then

_ e —1
<qs 3/2—c¢(lne)

dA(SJrl)(a/) dA(s)(a/)
do do
(d/l(””(a”)

(S)f !
_dA i (CX ) Sq—3/2—z'(1n e)~!
do do g
In a similar way one defines 4, ,. On the interval («', «”) the second
derivative

2 g(s+1 2 2 -1
BPAG )/dO( >q;/+lc(lns)

This is an immediate consequence of (9.4). Thus we have defined com-
pletely the graph 4+ (), the function ®“*)(«), and the points a,< ¢, <
d;< b,. All other needed properties follow easily from the construction.

The construction also gives for almost all « the limiting function
A(e)=1lim, _ , A)(x), which takes values in a Cantor set of positive
measure. The lengths of f.z. decay exponentially with the number labeling
their appearence, or, which is the same, with the diameter of the e.s. The
existence of the function @(x) also follows easily from the whole process.
We give now the complete formulation of the main theorem.

Main Theorem. Assume that V' is a C*-function on S' having one
nondegenerate minimum and one nondegenerate maximum. Then for suf-
ficiently small &:

(a;) The integrated density of states is a noncomplete Cantor devil’s
staircase.

(a,) For almost all « the operator H,(«) has a pure point spectrum
with exponentially decaying e.f.

10. SOME GENERALIZATIONS

The described technique is applied without any changes to Jacobi
matrices where off-diagonal terms depend quasiperiodically on n. Such
cases appear in the analysis of the Frohlich—Peierls model (I. M. Krichever,
personal communication). If we consider the Schrodinger difference
operators with potentials having two or more basic frequencies, then
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apparently the complete Anderson localization also holds for sufficiently
small ¢, but the integrated density of states has no gaps and is absolutely
continuous. We also hope that our technique will work for the localization
problems in the kicked-rotator model in the theory of quantum chaos (see
Ref. 36).

APPENDIX A. ESTIMATION OF THE COEFFICIENTS A, g;

Let us write (¢$), 0f))=0,,+c},. Then ¢}, =0if

i1iy iy

1 —1
dist(Z(g ), Z{g ) > const.-{ In ;) s

%,
N

For other i, i, we have

10;_”_2| < q‘f3/z ~c(lng)~!

from (a;). Thus, if [(¢$), @) =1+ C’, then
Héiliz‘i‘ CilizH =+ C/)71 =[-C+ (C,)Z + o

and we easily get

—[3/2—e¢(lne)~1/2
%Cimlgqs [3/2—c(lne)™'/2]m

if

3Ing, . ) ‘
— ) P 51, Z{p')
m=1)| St | < stz 202

Write down the expansion

The coefficients

hl_jzz (6, + ¢, )(hyg, (szsj)x)

il

In the last sum only the terms for which

1 —1
dist(Z(@).), Z(9$))) < const- <ln E) In g,
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may give a nonzero contribution to the last sum. Their absolute value is
not more than ¢ 2" and the total number of such terms is not more than
const - s°. These remarks and the previous estimation of ¢, give the needed
estimation of A; [see (4.7')]. In the same way one gets (4.7").

APPENDIX B. PROOF OF LEMMA 1, SECTION 6

First we remark that the sequence {¢{!} is almost orthogonal and
satisfies (a,), Section 4. This is obvious if the e.s. are sufficiently far from
each other. In the opposite case the shifts of {1 and @ " are ef or
almost ef. of H*)(x,) and H(«,,) and

|ot;, — o] < const-s’g; 2
If {1 is a nonresonant e.f, then the estimation

‘(go(sfr 1), @(u U)l < qfs/zﬂ-(ln g)~!
$

%, 71 a,lp

follows easily from the theorems of perturbation theory (see Sections 4 and
5). In the case of resonant ef one has to consider ¢{;"" and other
corresponding resonant e.f. and write down the expansion of ;" '’ over all
{¥)}. Again the needed estimation follows from the perturbation theory.
We omit the details of these calculations.

Now we have to show that {@{* "} is a basis. Assume that this is
wrong and that there exists Y = {¥(n)}, 0<n<gq,, , for which

W, ol =3 d(n) oL () =0
for all i and Y, [y(n){*=1. Let J,,={J,,}. Then we can write 6, =
> d W)+ Y, where a, =« +mw, , ; and 3" is taken over those Yy | for
which the distance between m and the es. is not more than const-

(In 1/e) ~'s. We have the estimations

—3/2—¢(lng)~!
8 3

1 ) _ . 1
Z !ijl _ ll < qs+3/12 2¢(In g)
J

Further,
Y=200m) 6, =L X P(m) e+

where for y we have the trivial estimation

Il <q~1/2 2¢(lng)~!
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We rewrite the expression for i as follows:
F=S T U eot =S ok 41
m j

where we replace ¥ by the corresponding ¢+" and include the dif-
ference in y'. We have

lZ d;—1 \ SRy g, v e

But the Ilast inequalities contradict to orthogonality conditions
(F. 957 ") =0 for all j. |
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